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5G Telemedicine & Medical Training

The purpose of this article is to inform about exciting
activities and future visionary events taking place to
enhance Department of Defense (DOD) medical support
capabilities within the developing 5G core environment.

In June 2020, Office of the Undersecretary of Defense (Research & Engineering) named
Joint Base San Antonio (JBSA) as an experimentation site for 5G augmented reality
support for telemedicine and medical training. Although telemedicine is already happening
today, it is often inhibited by a lack of adequate digital connectivity supporting the data
speeds and volumes needed to provide real-time virtual healthcare. Since 5G is a critical
strategic technology, the DOD must master SG networks, which will eventually touch
every mission and operation of DOD medicine.

The joint DOD telemedicine community has identified seven key goals that SG solutions
must address:

Goal 1: Save lives and maximize preventive medicine.

Goal 2: Provide resilient and fault-tolerant medicine and medical services anywhere in the
world to support U.S. national interests and maintain military mission assurance.

Goal 3: Collapse time and space to achieve real-time virtual and digital medical support.
Goal 4: Extend medical expertise forward to the operational edge to enhance support for
mobile forces in operational or austere environments.

Goal 5: Ensure mission and data security in all medical applications.

Goal 6: Maintain an environment which allows DOD medicine and medical services to
practice virtual medicine to the maximum state possible.

Goal 7: Provide an environment that facilitates the injection of new technologies in
support of telemedicine applications.

5G Advanced Telerobotic Surgery
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Telerobot-assisted laparoscopic adrenalectomy:
feasibility study

Jianmin Li', Wei Jiao?, Hang Yuan?, Wei Feng®, Xuemei Ding?, Xulong Yin®, Liangjun Zhang®, Wei Lv’, Lufei Ma®, Liguo Sun®,
Run Feng®, Jun Qin'’, Xuefeng Zhang'?, Chengyi Gou'?, Shuxin Wang?, Zongyi Yu'?, Bin Wei'*, Lei Luo?, Fei Xie?, Yuan Chang?®,
Yonghua Wang>*, Pier C. Giulianotti'®*, Qian Dong"’* and Haitao Niu**

(13,a)

el S W v . [ R - P
Table 1 Detailed intraoperative network communication and surgical outcomes of telerobot-assisted laparoscopic adrenalectomy
——»—  Cable network Video cameras at each site itori 2
Patient Network communication Surgical outcomes comectonserome  Millp S0 coenavor @M prouing i ook (?) o noork sty /b Tecical engineer
Distance Network Total Network- Duration of Blood NASA-TLX Clavien— Pain score 1 Equipment and network for telero isted lap pic adrenal y
(km) latency (ms) latency related adverse  teleoperation (min) loss (ml) score Dindo grade at24h
(ms)* events (VAS)

1 250 54 204 2 60 35.66 72 I 2

2 82.5 43 193 0 85 68.47 72 1 1

3 199 30 180 1 58 24.32 72 I 5

4 199 32 182 1 45 4.85 97 I 3

5 199 29 179 0 73 52.40 76 I 3

6 82.5 27 177 0 42 17.69 43 I 1

7 250 35 185 0 38 27.02 52 I 1

8 250 31 181 1 34 22.32 90 I 1

9 250 30 180 0 49 35.63 66 I 1

10 250 34 184 0 42 26.20 67 I 1

11 82.5 22 172 0 44 3.07 71 I 1

12 82.5 23 173 0 47 20.30 72 I 2

13 250 32 182 1 70 13.42 46 I 1

14 250 32 182 0 21 10.35 44 I 1

15 250 34 184 0 21 22.77 35 I 2

*The total latency (tl) includes network latency (nl) and the time for the robot system to process the signal (tr): tl=tr +nl. The tr was approximately 150 ms, including
the servo period of the surgical robot (less than 1 ms), the mechanical response delay of the robot (40 ms), endoscopic imaging, image processing delay (50 ms), and

the video codec delay (60 ms). NASA-TLX, National Aeronautics and Space Administration Task Load Index; VAS, visual analogue scale.




In space, robots
could someday
make housecalls for
doctors far from
astronauts. Virtual
Incision Corp. last
week announced
that it will test its
MIRA surgical
robot's skills in a

2024 technology
demonstration
mission aboard the
International Space
Station, or ISS.

The Robotics Applications Conference

from Robotics 24/7.
August10,2022
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A deep-learning model using automated
performance metrics and clinical features to
predict urinary continence recovery after
robot-assisted radical prostatectomy

Andrew J. Hung*®, Jian Chen*®, Saum Ghodoussipour*, Paul J. Oh*, Zequn Liu',
Jessica Nguyen*, Sanjay Purushotham?, Inderbir S. Gill* and Yan Liu®

*Center for Robotic Simulation and Education, USC Institute of Urology, Keck School of Medicine, University of Southern
California, Los Angeles, CA, USA, 'School of Electronics Engineering and Computer Science, Peking University, Bejjing,
China, *Department of Information Systems, University of Maryland, Baltimore, MD, and *Computer Science
Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA

Table 1 Automated performance metrics and patient clinicopathological features.

APM
Time-related metrics

Time to complete the task

Moving time of the right instrument

Moving time of the left instrument

Moving time of third instrument

Moving time of the camera

Time of no instrument or camera movement

Time of the right instrument not moving during the task

Time of the left instrument not moving during the task

Time of the third instrument not moving during the task

Time of the camera not moving during the task
Instrument kinematic metrics

Path length of the right instrument

Moving velocity of the right instrument

Path length of the left instrument

Moving velocity of left instrument

Path length of the third instrument

Path length of all three instruments

Ratio of path length of right and left instruments
Camera movement metrics

Path length of the camera

Moving velocity of the camera

Number of camera adjustments during the task

Frequency of camera adjustment

Mean of time of each camera movement

Mean path length of each camera movement

Mean of straight path length of each camera movement
System event metrics

Master clutch usage during task

Third arm swap during task

Energy usage during task

Frequency of master clutch usage
Frequency of third arm swap
Frequency of energy application
Number of times surgeon’s head out of the console
EndoWrist® articulation metrics
The total radians of the right instrument shaft rotation during the task
The total radians of the right instrument wrist movement during the task
The total radians of the right instrument jaw opening during the task
The total radians of the left instrument shaft rotation during the task
The total radians of the left instrument wrist movement during the task
The total radians of the left instrument jaw opening during the task
Right instrument articulation during the task
Left instrument articulation during the task
Angular velocity of the right instrument articulation
Angular velocity of the left instrument articulation
Clinicopathological features
Age
BMI
Preoperative PSA
Preoperative biopsy Gleason score
ASA
Surgery time
Lymph node dissection
Urethropexy
Nerve-sparing
Prostatic median lobe
Final pathology Gleason score
Pathological stage
Extracapsular extension
Prostate volume
Positive margins
Radiation received

APM, automated performance metric; ASA, American Society of Anesthesiologists; BMI, body mass index.

Step 1.

Urinary continence recovery
prediction modeling and feature
ranking

Step 1.

Surgeon stratification and
historical cases comparison

161 RARPs from eight USC surgeons recorded
by a da Vinci system data recorder

!

100 cases included full follow-up data

!

Three prediction models were trained to
predict continence recovery after RARP
| |

Random survival Deep learning models
for based survival analysis

(DeepSurv)

|

The mode with the highest accuracy
(DeepSurv) was selected (Table 4)

The top 5 ranked features were used to
stratify the surgeons into two groups (Table 2)

gl e

Group 1/APMs Group 2/APMs
(More efficient APMs) (Less efficient APMs)

! !

Outcomes of 493 historical cases were
compared between the two groups (Table 6)




Objectives

To predict urinary continence recovery after robot-assisted
radical prostatectomy (RARP) using a deep learning (DL)
model, which was then used to evaluate surgeon’s historical
patient outcomes.

Subjects and Methods

Robotic surgical automated performance metrics (APMs)
during RARP, and patient clinicopathological and
continence data were captured prospectively from 100
contemporary RARPs. We used a DL model (DeepSurv) to
predict postoperative urinary continence. Model features
were ranked based on their importance in prediction. We
stratified eight surgeons based on the five top-ranked
features. The top four surgeons were categorized in ‘Group
1/APMs’, while the remaining four were categorized in
‘Group 2/APMs’. A separate historical cohort of RARPs
(January 2015 to August 2016) performed by these two
surgeon groups was then used for comparison.
Concordance index (C-index) and mean absolute error
(MAE) were used to measure the model’s prediction
performance. Outcomes of historical cases were compared

using the Kruskal-Wallis, chi-squared and Fisher’s exact
tests.

Results

Continence was attained in 79 patients (79%) after a median of
126 days. The DL model achieved a C-index of 0.6 and an
MAE of 85.9 in predicting continence. APMs were ranked
higher by the model than clinicopathological features. In the
historical cohort, patients in Group 1/APMs had superior rates
of urinary continence at 3 and 6 months postoperatively (47.5
vs 36.7%, P = 0.034, and 68.3 vs 59.2%, P = 0.047, respectively).

Conclusion

Using APMs and clinicopathological data, the DeepSurv DL
model was able to predict continence after RARP. In this
feasibility study, surgeons with more efficient APMs achieved
higher continence rates at 3 and 6 months after RARP.

Keywords

robotic surgical procedures, prostatectomy, artificial
intelligence, urinary incontinence, quality of life
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